3.5.21 \(\int x^3 (a+b \log (c (d+\frac {e}{\sqrt {x}})^n)) \, dx\) [421]

Optimal. Leaf size=171 \[ \frac {b e^7 n \sqrt {x}}{4 d^7}-\frac {b e^6 n x}{8 d^6}+\frac {b e^5 n x^{3/2}}{12 d^5}-\frac {b e^4 n x^2}{16 d^4}+\frac {b e^3 n x^{5/2}}{20 d^3}-\frac {b e^2 n x^3}{24 d^2}+\frac {b e n x^{7/2}}{28 d}-\frac {b e^8 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{4 d^8}+\frac {1}{4} x^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )-\frac {b e^8 n \log (x)}{8 d^8} \]

[Out]

-1/8*b*e^6*n*x/d^6+1/12*b*e^5*n*x^(3/2)/d^5-1/16*b*e^4*n*x^2/d^4+1/20*b*e^3*n*x^(5/2)/d^3-1/24*b*e^2*n*x^3/d^2
+1/28*b*e*n*x^(7/2)/d-1/8*b*e^8*n*ln(x)/d^8-1/4*b*e^8*n*ln(d+e/x^(1/2))/d^8+1/4*x^4*(a+b*ln(c*(d+e/x^(1/2))^n)
)+1/4*b*e^7*n*x^(1/2)/d^7

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2504, 2442, 46} \begin {gather*} \frac {1}{4} x^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )-\frac {b e^8 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{4 d^8}-\frac {b e^8 n \log (x)}{8 d^8}+\frac {b e^7 n \sqrt {x}}{4 d^7}-\frac {b e^6 n x}{8 d^6}+\frac {b e^5 n x^{3/2}}{12 d^5}-\frac {b e^4 n x^2}{16 d^4}+\frac {b e^3 n x^{5/2}}{20 d^3}-\frac {b e^2 n x^3}{24 d^2}+\frac {b e n x^{7/2}}{28 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*Log[c*(d + e/Sqrt[x])^n]),x]

[Out]

(b*e^7*n*Sqrt[x])/(4*d^7) - (b*e^6*n*x)/(8*d^6) + (b*e^5*n*x^(3/2))/(12*d^5) - (b*e^4*n*x^2)/(16*d^4) + (b*e^3
*n*x^(5/2))/(20*d^3) - (b*e^2*n*x^3)/(24*d^2) + (b*e*n*x^(7/2))/(28*d) - (b*e^8*n*Log[d + e/Sqrt[x]])/(4*d^8)
+ (x^4*(a + b*Log[c*(d + e/Sqrt[x])^n]))/4 - (b*e^8*n*Log[x])/(8*d^8)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps

\begin {align*} \int x^3 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right ) \, dx &=-\left (2 \text {Subst}\left (\int \frac {a+b \log \left (c (d+e x)^n\right )}{x^9} \, dx,x,\frac {1}{\sqrt {x}}\right )\right )\\ &=\frac {1}{4} x^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )-\frac {1}{4} (b e n) \text {Subst}\left (\int \frac {1}{x^8 (d+e x)} \, dx,x,\frac {1}{\sqrt {x}}\right )\\ &=\frac {1}{4} x^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )-\frac {1}{4} (b e n) \text {Subst}\left (\int \left (\frac {1}{d x^8}-\frac {e}{d^2 x^7}+\frac {e^2}{d^3 x^6}-\frac {e^3}{d^4 x^5}+\frac {e^4}{d^5 x^4}-\frac {e^5}{d^6 x^3}+\frac {e^6}{d^7 x^2}-\frac {e^7}{d^8 x}+\frac {e^8}{d^8 (d+e x)}\right ) \, dx,x,\frac {1}{\sqrt {x}}\right )\\ &=\frac {b e^7 n \sqrt {x}}{4 d^7}-\frac {b e^6 n x}{8 d^6}+\frac {b e^5 n x^{3/2}}{12 d^5}-\frac {b e^4 n x^2}{16 d^4}+\frac {b e^3 n x^{5/2}}{20 d^3}-\frac {b e^2 n x^3}{24 d^2}+\frac {b e n x^{7/2}}{28 d}-\frac {b e^8 n \log \left (d+\frac {e}{\sqrt {x}}\right )}{4 d^8}+\frac {1}{4} x^4 \left (a+b \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )\right )-\frac {b e^8 n \log (x)}{8 d^8}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 158, normalized size = 0.92 \begin {gather*} \frac {a x^4}{4}+\frac {1}{4} b x^4 \log \left (c \left (d+\frac {e}{\sqrt {x}}\right )^n\right )-\frac {1}{4} b e n \left (-\frac {e^6 \sqrt {x}}{d^7}+\frac {e^5 x}{2 d^6}-\frac {e^4 x^{3/2}}{3 d^5}+\frac {e^3 x^2}{4 d^4}-\frac {e^2 x^{5/2}}{5 d^3}+\frac {e x^3}{6 d^2}-\frac {x^{7/2}}{7 d}+\frac {e^7 \log \left (d+\frac {e}{\sqrt {x}}\right )}{d^8}+\frac {e^7 \log (x)}{2 d^8}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*Log[c*(d + e/Sqrt[x])^n]),x]

[Out]

(a*x^4)/4 + (b*x^4*Log[c*(d + e/Sqrt[x])^n])/4 - (b*e*n*(-((e^6*Sqrt[x])/d^7) + (e^5*x)/(2*d^6) - (e^4*x^(3/2)
)/(3*d^5) + (e^3*x^2)/(4*d^4) - (e^2*x^(5/2))/(5*d^3) + (e*x^3)/(6*d^2) - x^(7/2)/(7*d) + (e^7*Log[d + e/Sqrt[
x]])/d^8 + (e^7*Log[x])/(2*d^8)))/4

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int x^{3} \left (a +b \ln \left (c \left (d +\frac {e}{\sqrt {x}}\right )^{n}\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*ln(c*(d+e/x^(1/2))^n)),x)

[Out]

int(x^3*(a+b*ln(c*(d+e/x^(1/2))^n)),x)

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 115, normalized size = 0.67 \begin {gather*} \frac {1}{4} \, b x^{4} \log \left (c {\left (d + \frac {e}{\sqrt {x}}\right )}^{n}\right ) + \frac {1}{4} \, a x^{4} + \frac {1}{1680} \, b n {\left (\frac {60 \, d^{6} x^{\frac {7}{2}} - 70 \, d^{5} x^{3} e + 84 \, d^{4} x^{\frac {5}{2}} e^{2} - 105 \, d^{3} x^{2} e^{3} + 140 \, d^{2} x^{\frac {3}{2}} e^{4} - 210 \, d x e^{5} + 420 \, \sqrt {x} e^{6}}{d^{7}} - \frac {420 \, e^{7} \log \left (d \sqrt {x} + e\right )}{d^{8}}\right )} e \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*(d+e/x^(1/2))^n)),x, algorithm="maxima")

[Out]

1/4*b*x^4*log(c*(d + e/sqrt(x))^n) + 1/4*a*x^4 + 1/1680*b*n*((60*d^6*x^(7/2) - 70*d^5*x^3*e + 84*d^4*x^(5/2)*e
^2 - 105*d^3*x^2*e^3 + 140*d^2*x^(3/2)*e^4 - 210*d*x*e^5 + 420*sqrt(x)*e^6)/d^7 - 420*e^7*log(d*sqrt(x) + e)/d
^8)*e

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 176, normalized size = 1.03 \begin {gather*} \frac {420 \, b d^{8} x^{4} \log \left (c\right ) + 420 \, a d^{8} x^{4} - 70 \, b d^{6} n x^{3} e^{2} - 420 \, b d^{8} n \log \left (\sqrt {x}\right ) - 105 \, b d^{4} n x^{2} e^{4} - 210 \, b d^{2} n x e^{6} + 420 \, {\left (b d^{8} n - b n e^{8}\right )} \log \left (d \sqrt {x} + e\right ) + 420 \, {\left (b d^{8} n x^{4} - b d^{8} n\right )} \log \left (\frac {d x + \sqrt {x} e}{x}\right ) + 4 \, {\left (15 \, b d^{7} n x^{3} e + 21 \, b d^{5} n x^{2} e^{3} + 35 \, b d^{3} n x e^{5} + 105 \, b d n e^{7}\right )} \sqrt {x}}{1680 \, d^{8}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*(d+e/x^(1/2))^n)),x, algorithm="fricas")

[Out]

1/1680*(420*b*d^8*x^4*log(c) + 420*a*d^8*x^4 - 70*b*d^6*n*x^3*e^2 - 420*b*d^8*n*log(sqrt(x)) - 105*b*d^4*n*x^2
*e^4 - 210*b*d^2*n*x*e^6 + 420*(b*d^8*n - b*n*e^8)*log(d*sqrt(x) + e) + 420*(b*d^8*n*x^4 - b*d^8*n)*log((d*x +
 sqrt(x)*e)/x) + 4*(15*b*d^7*n*x^3*e + 21*b*d^5*n*x^2*e^3 + 35*b*d^3*n*x*e^5 + 105*b*d*n*e^7)*sqrt(x))/d^8

________________________________________________________________________________________

Sympy [A]
time = 59.31, size = 162, normalized size = 0.95 \begin {gather*} \frac {a x^{4}}{4} + b \left (\frac {e n \left (\frac {2 x^{\frac {7}{2}}}{7 d} - \frac {e x^{3}}{3 d^{2}} + \frac {2 e^{2} x^{\frac {5}{2}}}{5 d^{3}} - \frac {e^{3} x^{2}}{2 d^{4}} + \frac {2 e^{4} x^{\frac {3}{2}}}{3 d^{5}} - \frac {e^{5} x}{d^{6}} + \frac {2 e^{6} \sqrt {x}}{d^{7}} - \frac {2 e^{8} \left (\begin {cases} \frac {1}{d \sqrt {x}} & \text {for}\: e = 0 \\\frac {\log {\left (d + \frac {e}{\sqrt {x}} \right )}}{e} & \text {otherwise} \end {cases}\right )}{d^{8}} + \frac {2 e^{7} \log {\left (\frac {1}{\sqrt {x}} \right )}}{d^{8}}\right )}{8} + \frac {x^{4} \log {\left (c \left (d + \frac {e}{\sqrt {x}}\right )^{n} \right )}}{4}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*ln(c*(d+e/x**(1/2))**n)),x)

[Out]

a*x**4/4 + b*(e*n*(2*x**(7/2)/(7*d) - e*x**3/(3*d**2) + 2*e**2*x**(5/2)/(5*d**3) - e**3*x**2/(2*d**4) + 2*e**4
*x**(3/2)/(3*d**5) - e**5*x/d**6 + 2*e**6*sqrt(x)/d**7 - 2*e**8*Piecewise((1/(d*sqrt(x)), Eq(e, 0)), (log(d +
e/sqrt(x))/e, True))/d**8 + 2*e**7*log(1/sqrt(x))/d**8)/8 + x**4*log(c*(d + e/sqrt(x))**n)/4)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 272 vs. \(2 (134) = 268\).
time = 4.71, size = 272, normalized size = 1.59 \begin {gather*} \frac {1}{4} \, b x^{4} \log \left (c\right ) + \frac {1}{4} \, a x^{4} - \frac {1}{1680} \, {\left ({\left (\frac {420 \, \log \left (\frac {{\left | d \sqrt {x} + e \right |}}{\sqrt {{\left | x \right |}}}\right )}{d^{8}} - \frac {420 \, \log \left ({\left | -d + \frac {d \sqrt {x} + e}{\sqrt {x}} \right |}\right )}{d^{8}} + \frac {1089 \, d^{7} - \frac {4683 \, {\left (d \sqrt {x} + e\right )} d^{6}}{\sqrt {x}} + \frac {9639 \, {\left (d \sqrt {x} + e\right )}^{2} d^{5}}{x} - \frac {11165 \, {\left (d \sqrt {x} + e\right )}^{3} d^{4}}{x^{\frac {3}{2}}} + \frac {7490 \, {\left (d \sqrt {x} + e\right )}^{4} d^{3}}{x^{2}} - \frac {2730 \, {\left (d \sqrt {x} + e\right )}^{5} d^{2}}{x^{\frac {5}{2}}} + \frac {420 \, {\left (d \sqrt {x} + e\right )}^{6} d}{x^{3}}}{{\left (d - \frac {d \sqrt {x} + e}{\sqrt {x}}\right )}^{7} d^{8}}\right )} e^{9} - \frac {420 \, e^{9} \log \left ({\left (d e^{\left (-1\right )} - \frac {{\left (d \sqrt {x} + e\right )} e^{\left (-1\right )}}{\sqrt {x}}\right )} {\left (\frac {d}{d e^{\left (-1\right )} - \frac {{\left (d \sqrt {x} + e\right )} e^{\left (-1\right )}}{\sqrt {x}}} - e\right )}\right )}{{\left (d - \frac {d \sqrt {x} + e}{\sqrt {x}}\right )}^{8}}\right )} b n e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*(d+e/x^(1/2))^n)),x, algorithm="giac")

[Out]

1/4*b*x^4*log(c) + 1/4*a*x^4 - 1/1680*((420*log(abs(d*sqrt(x) + e)/sqrt(abs(x)))/d^8 - 420*log(abs(-d + (d*sqr
t(x) + e)/sqrt(x)))/d^8 + (1089*d^7 - 4683*(d*sqrt(x) + e)*d^6/sqrt(x) + 9639*(d*sqrt(x) + e)^2*d^5/x - 11165*
(d*sqrt(x) + e)^3*d^4/x^(3/2) + 7490*(d*sqrt(x) + e)^4*d^3/x^2 - 2730*(d*sqrt(x) + e)^5*d^2/x^(5/2) + 420*(d*s
qrt(x) + e)^6*d/x^3)/((d - (d*sqrt(x) + e)/sqrt(x))^7*d^8))*e^9 - 420*e^9*log((d*e^(-1) - (d*sqrt(x) + e)*e^(-
1)/sqrt(x))*(d/(d*e^(-1) - (d*sqrt(x) + e)*e^(-1)/sqrt(x)) - e))/(d - (d*sqrt(x) + e)/sqrt(x))^8)*b*n*e^(-1)

________________________________________________________________________________________

Mupad [B]
time = 0.98, size = 140, normalized size = 0.82 \begin {gather*} \frac {\frac {b\,d\,e^7\,n\,\sqrt {x}}{4}-\frac {b\,d^2\,e^6\,n\,x}{8}+\frac {b\,d^7\,e\,n\,x^{7/2}}{28}-\frac {b\,d^4\,e^4\,n\,x^2}{16}-\frac {b\,d^6\,e^2\,n\,x^3}{24}+\frac {b\,d^3\,e^5\,n\,x^{3/2}}{12}+\frac {b\,d^5\,e^3\,n\,x^{5/2}}{20}+\frac {b\,e^8\,n\,\mathrm {atan}\left (\frac {d\,1{}\mathrm {i}+\frac {e\,2{}\mathrm {i}}{\sqrt {x}}}{d}\right )\,1{}\mathrm {i}}{2}}{d^8}+\frac {a\,x^4}{4}+\frac {b\,x^4\,\ln \left (c\,{\left (d+\frac {e}{\sqrt {x}}\right )}^n\right )}{4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*log(c*(d + e/x^(1/2))^n)),x)

[Out]

((b*e^8*n*atan((d*1i + (e*2i)/x^(1/2))/d)*1i)/2 - (b*d^2*e^6*n*x)/8 + (b*d*e^7*n*x^(1/2))/4 + (b*d^7*e*n*x^(7/
2))/28 - (b*d^4*e^4*n*x^2)/16 - (b*d^6*e^2*n*x^3)/24 + (b*d^3*e^5*n*x^(3/2))/12 + (b*d^5*e^3*n*x^(5/2))/20)/d^
8 + (a*x^4)/4 + (b*x^4*log(c*(d + e/x^(1/2))^n))/4

________________________________________________________________________________________